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3“ , The theorem proved above with allowance for (32) implies the existence and 

u~quen~s of second approxima~on solution of problem (12) - (15). 
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An arbitrary irrotational flow of perfect in~ompr~ibIe Xiquid containing a con- 

siderable number of spherical gas bubbles is considered. Two methods of avera- 
ging exact characteristics of the motion of bubbles in the liquid, viz. by volume 

and by bubble centers, are introduced, Formulas relating the average quantities 
of two different kinds are derived. The boundary value problem for the mean 
potential is formulated on the basis of the exact boundary value problem for the 
velocity potential. The obtained equation for the potential in the particular case 

of unbounded liquid with low concentration of bubbles coincides with that derived 

in /l/. 
It is shown that dynamic equations for the average characteristics of moving 

bubbles accurate to within the product of volume concentration by the velocity 



of bubbles cannot be derived without considering the pattern of disposition of 

bubbles relative to the medium microstructure. 
Closed equations of motion are derived for a liquid with bubbles, and condi- 

tions of the applicability of the model of liquid with “frozen in” bubbles are 

obtained. 

A comprehensive survey of publication on the subject of equations of motion 

of liquid with bubbles appears in /l/. 

1, The exact “mrcrorcopic” problem. Two methods of rvstrg- 
ing. An arbitrarp surface 8, and spheres 3’, (a = 1. %, . . .) move in a potential 
stream of perfect incompressible fluid that is at rest at infinity. The fluid velocity field 

VQ, is uniquely defined by the specified radii li), , coordinates of the sphere centers 

¶ cc , and velocities R,' and q,' . The potential is determined by the solution of the 

Neumann problem A@ = 0; (II-O, I’-?0 (1.1) 

where un is the normal translation velocity of surface S,, whose direction is outward 

from the fluid. 

Let the characteristic dimension I of surface S, considerably exceed ma.\ 14, = 

%- It is possible to determine dimension a that satisfies conditions R, +?&a< 1, 
and carry out the averaging of basic parameters in a sphere of radius a, 

If the density of gas, which is small in comparison with the density b of the liquid is 

neglected, the mean density p* of the medium is 

where Qf is the total volume occupied by the liquid ; it is bounded by surfaces s, and 

S,. Density p* is expressed in terms of volume concentration of bubbles c by 

(1.3) 

We define the averaging operations for functions 6 (xf determinate in Qf and the 
discrete functions b”a specified the centers of bubbles as follows : 

<g> = -& ‘i 
d, 

rI (x - x’) g (x’) d%‘, g, = + 2 II (x - qu) v,g, (1.4) 
Q 

It is assumed that the distribution of bubbles in space and the basic kinematic char- 
. . 

acter*stlcs q,, R,, R,’ and qa’ are such that there exists an averaging dimension a 
for which within distances of its order of magnitude the mean quantities (1.2) - (I.4) 

vary only little. This means that in any sphere of radius a within which averaging is 
carried out the number of bubbles is reasonably great. 

The results of averaging is then, obviously, independent of the shape of the region in 
which it is carried out and of the particular form of the averaging function Ii (x). The 
sphere was chosen for simplicity of calculations. 

Variation of the medium density (1.2) with time is completely determined by the 
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normal velocity component of the liquid v’ at its boundary 
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6P* 
at = s Pn@- an s (1.3) 

/ 
x’)v’ndS = “f pu; (x{)-&- l-I (x - x’) &X 

i 

Expressing the derivative of n with respect to xi’ in terms of the derivative with 

respect to xi, we obtain from (1, ‘2) and (1.5) the equation of conservation of mass of 

the medium 
@,/at + div P*V - 0, v = (v') (1.6) 

Differentiating both parts of the second formula in (1.3) with respect to time, we obtain 

the equation of continuity for the gas phase 

ac 
at =3c-$-divcu, G= (5)) U=&J (1.7) 

01 

It follows from (l-3), (1.6) and (1.7) that 

div Iv $ c (u - v)l = 3~12’ / R (I.81 

Thus the derived method of averaging by formulas (1.3) and (1.4) yields, as expected, 
the known equations (1.6) and (1.7). 

At the discontinuity surface moving at velocity D, the condition of conservation of 

mass is 
[(I - d (vn - D)l = 0 (1.9) 

where brackets denote a jump of the function. 

If the discontinuity moves together with the bubbles, i. e D = un, then (1.9) as- 

suma the form 
[vnt_c(u-v)n] =o (1.10) 

Formula (1.10) is valid, for instance, at the surface separating the regions of fluid 

with and without bubbles. 

2, Equrtlonr for average kiacmotic chrrrcteritttta, Using the 
fundamental identity for harmonic functions, it is possible to represent the potential 

which is the solution of problem (1.1) in the form of a sum 

Q, = cQ%, 4na&=j (f4+D --&-gdS, u=o,i,... (2.1) 
cl CL 

where Qa is equal to the integral over surface S, of the moving body. Every function 
CD, is harmonic everywhere outside surface S,. For a = 1, 2, . . , function a, 
is of the form 

R,aR,’ 
@a==- Is_q,[ + 2 ~Ra3w,+ ' 

i I"-%I +m (2.2) 

Vector w,in (2.2), equal to the difference between the bubble velociq q,’ and the 

stream velocity “adjusted” to the bubble center qa , is defined by 

w, = q,:-- V@,’ Is=+ CD,’ (x) = $ @P (x) 

The residual term 6@, in (2.2) can be represented with the use 
for a sphere /2/ as 

[Y (r,*) - Y (r4*t)] dt 

(2.3) 

of the Weiss theorem 

(2.4) 
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Y = aqx) - CD,’ (qa) - .$L 1 
rai ?Z 

FD,’ 

i “=Q 2 az,azj rairaj 

r, = x - qa, ra* = $l- @ - qa) 

For the residual term in (2.2) from formula (2.4) we obtain 

Ra5 a-w a2 m,=--.- - 
9 ax,axj n=q I +0(T) 

aaxiaxj I’-qQ,l \ I 

Formulas (2.1) - (2.3) determine functions C$ and VO which are continuous in ST, 

and, also, the discrete functions 0, and VCDa’ specified at the centers of spheres qa. 
All these functions, which are kinematic characteristics of the medium, are uniquely 

determined by the solution of the boundary value problem (1. l), when the discrete func- 

tions R,, R,‘and qp’ and the normal velocity of boundary S, are known. 

In conformity with the definitions (1.4) all these characteristics can be averaged. 

The averages (@)>, <V@ >, CD,’ and VCD,’ must be determined in terms of the aver- 
ages of specified characteristics R,, R,', qa* and c. Below, the boundary value prob- 

lem for (CD) is formulated and a method for computing the mean-mass velocity<V@ > 

in terms of (@ > and of specified average characteristics is presented. 
Lemma 1. Formulas 

CD(X) = (1 -c) <O) + c&’ + x0(@.(x)- + ‘; @,(x’)tE’~‘j (2.5) 

- ++wa (.)-s’i VCD (x) = (1 - c) (WD) + cm, 
il WV, 

w&(x’) d”z’) 

are valid to within smalls of the order of CR/a . In these formulas V is a sphere of 

radius a whose center is located at point X, Va is a sphere of radius R,whose center 

lies at point q,(the region occupied by the bubble), I/’ \ V, is a region consisting of 

points of sphere JJ’ less the points belonging to sphere v,. The symbol x:ao represents 

the sum of only such terms to which 1 q, - x 1 < a. All functions in (2.5) are deter- 

mined for some point x E iZ,. 
Formulas (2.5) imply that the complete sum (2.1) isintheform ofa “smoothed” func- 

tion and of its deviation which is determined by exact values of potentials @a (x) re- 
lated to spheres lying in the proximity of point x. Note that the omission in sums (2.5) 
of terms for which boundaries of spheres 1’ and V, intersect each other is unimportant, 

since the contribution of their sums is small, being of order CR / U. 
Both formulas (2.5) are derived in the same manner. The first of these can be obtained 

by using the definition (1.4) of the averaged value and formulas (2.1). We have 

Taking into consideration that the integral of a harmonic function over a sphere is 

equal to the value of that function at the sphere center multiplied by the sphere volume 

and allowing for formulas (1.4), (2.1) and (2.3), we obtain 
- 

CU, ’ = _+ 2 2 ’ i i,,, (x’) dSx’ 
a Pfa \fi 
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Adding the last two formulas, after some simple transformations, we obtain the first 

of formulas (2.5). Lemma 1 is thus proved. 
The integrals in (2.5) taken over region JJ \ 7, can be exactly computed by using 

expansion (2.2) and the following formulas : 

s 1 d3~‘.z 2~ 
IX’--Ai * 

a2-R 2 2 -+]qa-X[a) 
v\v, 

s (2.6) 

v\v, 
The related integrals of higher order multipoles vanish. 
Lemma 1 makes it possible to establish the important relationship between the two 

kinds of parameters (@) and sai. To do this it is sufficient to average equality 

(2.5) (1- c) (a>,l- (@)) = Qa 
Qa (qa) = @;: (@P (qa) - $ & @P (x’) d’s’) 

(2.7) 

where v is a sphere of radius a whose center is at point qa. 
A similar formula is valid also for the potential gradient. With the use of (2.6) it can 

(2.8) 

The estimates in (2.7) and (2.8) with allowance for (2.2) and (2.6) lead to the con- 

clusion that 
$-&(Q)=o(e+2), FF-(t;~)=O(c%%) (2.9) 

Since parameter a of averaging is “infinitely” small, the averages w and (@) 

are identical. If these functions are considered as generalized, then their derivatives of 

any order are also equal. The average velocities m,’ and (Ccl,) are, however, ge- 

nerally substantially different. 
If it is assumed, as in /l/, that w@varies only little at distances of order a, then vector 

w z wp can be removed from the summation sign in (2.8) 

(2.10) 

It will be readily seen that the trace of tensor Aij is zero 

Aii = 0 (2.11) 

Terms which correspond to bubbles situated in the vicinity of q, provide the main 
contribution to the sum appearing in (2.10). If the variation of VP inside the sphere is 
small, the sum of terms corresponding to bubbles situated in a spherical layer r < 1 q,- 
x i < ti at a reasonable distance from point q, can be approximated by an integral 
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which is equal zero. 

The average value of “ii depends on the pattern of the relative disposition of bubbles 
(the microstructure). In the case of isotropy tensor Aij is spherical, and in virtue of 

(2. 11) we have .,i ij = U. It follows from this and (2. 10) that in the case of isotropy 

w = v. 

Let f (x, x’, t) be the probability density of finding a bubble at point x’ , if point x 
is already occupied by the center of a given bubble. Function f defines the relative 
disposition of adjacent bubbles, and is of the form 

f (x, x’, f) = F (x, x - x’, t) u (x’) (2. 12) 

where tl (x’) is the number of bubbles in a unit of volume. For r = ( x - x’ I> ro, 
where r. is the average distance between bubbles, function F is equal unity (weaken- 

ing of correlation), is regular with respect to the first argument, and varies at microscopic 
distance in accordance with the second argument. Tensor Aij in (2. 10) in terms of pro- 

bability density (2. 12) is expressed by 

‘$ = & 
s. 

a2 1 

F (XV X - X’, t) as,‘azjl 1 x _ x’ 1 d32’ (2. 13) 
I=---E [<a 

If the lines of level F = const represent the surfaces of similar concentric ellipsoids, 

then tensor Arj is generally independent of the specific form of the correlation func- 

tion F. It can be shown that in that case 

- 3 

1, 

a2 3 
+ 23x1 ;= 5 

s 

a 1 
-- 

“ij - X:x (~ -Tqq 
n. T-.-.- 

1 axj r 
as - + hij 

S 

where G is the volume of space bounded from inside by surface S of an ellipsoid and 
from outside by the sphere of radius a; the integrals are independent of the selection of 

a particular ellipsoid from the set of similar ellipsoids, 

The components of tensor iiij are functions of five parameters: the ratios of the prin- 

cipal axes of the ellipsoid and of three Euler’s angles which determine the position of 
the ellipsoid principal axes. Depending on these parameters, components of tensor Jij 

can be arbitrarily great. 
In the case of steady motion such as, for instance, bubbling,it is reaonable to assume 

that A ij is a tensor function of the relative velocity w. The general form of such ten- 

sor function satisfying condition (2.11) is 

A;j 7~ (SU’~W~ - W26ij)f (I W I) 

Lemma 2. Formula 

v ((1 - c) (cp) + cc&‘) = (1 - c) (VQ) + CVCD,’ -+ciGa (2. 14) 

is valid to within smalls of order CR / a. 
Proof. By differentiating the integrals with respect to x of which the region of in- 

tegration and transformation of integrands is independent, we obtain 
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Using definition (1.4) for averages and reducing the last integrals to surface integrals, 
we can obtain a 

r(‘--c)<ot,=(i--cl 
i <)-&I(X-$) \ @(x’)n@S (2* 15) 

a %Z 

--&(C@Z) z.C 
i c&%~+&(X-qPa) 1 

i 
QD,’ (x’) nias 

CL 
% 

where the equalities are accurate to within terms corresponding to spheres V, , whose 

boundaries intersect the surface of the sphere of radius a whose center is at point xI 

The contribution of these terms is small, of order CR/U. 

Formula (2.14) is obtained by adding equalities (2.15) and using the relationship 

at,-@,,‘==@,, ’ u$nas=A-w~ 

i 
2 

From Lemma 2 with allowance for estimites (2. 9) follows the important corollary 

v=V(@)-+ +v + O(c%), w = u - V (CD), v = (VC’) (2.16) 

where u is taken as the medium mean-mass velocity which appears in the equation of 

conservation of mass (1.8). 

Substituting (2. 16) into the equation of continuity (1. 8), for the averaged potential 
we obtain 

v ((1 - sj2c)v (CD)) = 3cR'/R - 3,4, V (cu) 3 O(c'> (2. 17) 
Condition 

vn = v, or $ ((D) = v,, + +- c (~3~ - un) (2. 18) 

must be satisfied at the surface S, of the solid body. 
We have thus proved the follo~ng theorem 

Theorem. Let CD be a solution of the boundary value problem (1. 1). (CD> and 

v == <V@ > be functions obtained by averaging potential CD and its gradient in confor- 

mity with (1.4), c a function determined by (1.3), and R’ / R and u functions deter- 
mined by (I, 7). Then function <@) satisfies Eq, (2. 17), the boundary condition (2, 18) 

and condition (1. 9) at the discontinuity, and v is determined by formula (2. 16). 
Thus, if concentration c, the average velocity of bubble motion u , and the average 

characteristic of variation of their volume H’ / & are known, the problem of computing 

the mean-mass velocity reduces to the solution of the boundary value problem (2, 17), 

(2, 18). velocity v is then determined by formula (2. 16). 
If the assumption made in the derivation of formula (2. 10) is true, it is possible to 

obtain from Lemma 2 the more accurate relationship than (2. 16) 

Vi = Vi (~ > i ‘/2 CU_i - C’Ai jU’j / (2 - C) (2. 19) 

which is valid for any bubble volume concentration C. 

Fu~hermore, if the relative disposition of bubbles is, in the average, isotropic, then, as 
shown previously, Aii = 0, and formula (2.19) and the equation for (@ > are consi- 
derably simplified. 

Formula (2. 19) is also valid in the particular case in which the bubble centers are at 
the nodes of a quasi-periodic lattice. For such structures tensor Aij can be defined by 
parameters of the lattice, 
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Formulas (2. 16) and (2. 1’7) were previously obtained in /l/ by a different method. 

Unlike in this work, it was in addition assumed there that R,, R,' and wR are regular 
functions of coordinates (i, e. their variations are macroscopic), and that solid boundaries 

are absent, The assumption in /l/ that for almost all bubbles 

(2.20) 

is approximately true, the error being -CU. III fact, it follows from (2. 10) and (2. 19) 
that 

and assumption (2.20) proves to be correct in the trivial case of w = o or, if simultan- 

eously the determinant of matrix 6ii + 2kj is zero and vector w is the eigenvalue of 

matrix +. For an isotropic structure or one close to it (2. 20) is satisfied only for w = 0, 

E x amp i e 1, Let us consider the problem of the velocity field for the motion of a 
bubble cloud in an unbounded liquid. Let concentration c of bubbles in the volume of 

a sphere of radius I be constant, while outside it is zero. Let the velocities of all bub- 
bles be the same and equal u, Then Eq. (2. 17) assumes the form A <@) = O. 

At the sphere boundary the average potential is continuous and the normal derivative 
in conformity with (1. 10) becomes discontinuous, Within smalls of order c the discon- 

tinuity is defined by 
[a (Q) / i)nl = - 3/2 [cunl = 3i, cun 

The solution of the problem is of the form 

(CD) = - 11, cur cos 0, v = 0 for r < 1 

(0) = - 1/2 cu (Z3 / 9) cos 8, v = V (@‘> for r > E 

where P and O are spherical coordinates with origin at the sphere center; angle O is 

measured from the line of the velocity vector u. The potential ((IQ in the case of 
motion of a spherical cloud of bubbles differs from that of motion of a solid sphere of 

radius I by the factor c. 

The motion of an ellipsoidal cloud of bubbles was considered in 13, 4/ on the assump- 

tion that the bubble centers were located at nodes of a cubic lattice. The average velo- 

city W,’ of the liquid induced at the bubble center and the rate of rise of the cloud 

in a heavy liquid of low viscosity were computed by the torentz method. The same re- 
sults can be obtained by the method expounded here, if one takes into consideration that 
the cubic lattice structure is isotropic and VQ,’ = (V@). The problem reduces to sol- 

ving the internal and external Neumann problem for an ellipsoid. 

Example 2. Let bubbles rise from a small area ,S of a horizontal area at constant 
velocity U, filling a cylindrical column with S as its base. The boundary value problem 

for the average potential is of the form: A (0) = 0; a<@)/a.z= -1/2 cu over S; <a>+ 
0 and r-+00. In that case the derivatives of the potential are continuous at the column 
boundary, There is an analogy between velocity field of the liquid outside the bubbles 
and that of the flow of a perfect incompressible liquid from an orifice of area S at the 

rate of II2 CU. 

3, The equrtfonr of motion of a liquid with bubbler, Tocompute 
the quantities averaged above over the volume it is necessary to examine the bubble 
velocities q,’ and the rates of change of radii R,‘. 
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Let r0 (the distance of the considered bubble to the one next to it) be considerably 

greater than the bubble radius a. The following equations are valid to within smalls 
of an order not lower than (R / r&J for the bubble motion in a n~u~fo~ stream 
/5 -7/, induced by the motion of other bubbles and solid bodies: 

par -I- p (a@,,’ I dt 4 l/2 (V@X’)~ f U) = con& 

where U is the potential of mass forces This system yields 4N equations of motion 
for iv bubbles in the system, The computation of @,’ for every configuration of bub- 

bles represents a kinematic problem. 

It is important toestimate the accuracy with which it is possible to average Eqs. (3. 1) 
of motion of bubbles, Let us assume that motion parameters vary only little over distan- 

ces of order ro. Then the values of any quantities in (3. 1) averaged with respect to bub- 

ble centers can be expressed in terms of probabi~ty density (2. 12). For instance, taking 

into account (2. 2) and (2. 3) it is possible to express the average potential ma’ and ve- 
locity m averaged with respect to centers in the form 

w=u-VCD,’ 

where w is the relative velocity of bubbles 

The integral formulas (3.2) make it possible to establish the relation between the 

average gradient of the potential and the gradient of the average potential 

m = Vi (su,l) + l/s CW( + CA,ijWj (3. 3) 

which in virtue of estimate (2. 9) is the same as the derived above relatio~~p (2.21). 

Tensor A< is determined by formula (2.13). 
The absolute convergence for r --+ 0 of integral terms in (3. 2). the insignificance of 

function f at small distances r 6 a for which function a (x’)can be substituted every- 

where, can be used for the derivation of formula (3.3). 
The derivative with respect to x can be brought out from the integrand 

-R”R&)d~z’=+~+~f (-JW+x’) (304) 
n 

On the other hand, the integral in (3.2) of the term of form ViVj (1 / r) is generally 

divergent for r --f o , and its value substantially depends on the form of function p when 
r-+ 0. 

With the use of (2.12) this integral can be represented in the form 
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(3. 5) 

f 2 axi&+ f 
__._d’xk& R3wj 9 1 

’ j s R+. a 1 d3sl _ 
clu3w. cYi7 a 1 f--i_L_-_ as r 2 3 ---. ax. I 1'35' 

Cl i axi 1 L! n 
Further it is possible to use the identity 

where the integral in the left-hand part is a small quantity of order a. The first integ- 

ral in the right-hand part differs from the last integral in (3. 5) by the factor I/, uRYwj, 

since derivatives of F vanish outside the sphere of radius a. The second integral is, in 

accordance with formula (2. f3), equal to tensor _Xij to within the multiplicant Finally, 
the integral over the sphere r = a is readily determined, since over the sphere F = I. 

As the result we obtain 

c aR3w. aj? a i 
- 3_-_ &3x’ = 

6% 
2 axj dXi r 

Substituting the derived relationship into (3. 5) and using formulas (3.2) and (3. 4),we 
obtain (3. 3). 

Tensor A< appearing in (3. 3) is determined by the form of the correlation function 

$’ that defines the average relative disposition of nearest bubbles. For instance, if the 

surface of level F = const represents concentric spheres (isotropy), then it follows 
from (2. 13) that Kj = 0. When the surfaces of level are similar concentric ellipsoids, 
then tensor zj is nonzero and, owing to the property (2, ll), does not reduce to a spheri- 

cal one, 

As shown in Section 2, components of tensor Aij , depending on parameters of ellips- 
oids, can assume any values, and the last term with A,*Wj in (3.3) can be a quantity of 

the same order as r/s cwt. Thus the average velocity V@,’ of the external nonuniform 

stream depends on the average relative position of adjacent bubbles. and its terms of or- 

der cw can assume any values, depending on the microscopic structure of the system of 

bubbles in the liquid. These values do necessarily vary with time. For instance, if the 
velocities of bubble centers are values of the regular function u at related points, the 
surface of level I? =r const varies with time in conformity with the affine transforma- 

tion of a small element of the sphere. 
The rate of strain of a small element of the medium is determined by the rate of strain 

tensor *ia (VjUi -+ Vial). it is possible to establish the relation between the variation 
of tensor Aij and the strain rate tensor. Hence in this case the isotropic distribution of 
bubbles (the surfaces of level are spheres) are transformed during subsequent instants of 
time in conformity with strains of medium elements into an essentially anisotropic dis- 
tribution (the surfaces of level become ellipsoids). This always occurs when grad pi_ 0. 
Hence it is not possible to allow in formula (3. 3) for terms of order cw without consider- 
ing the evolution of the system, 

It is possible to conclude that in the averaging of equations of motion (3. 1) all terms 
of order cw must be disregarded, since they cannot be taken into account without con- 
sidering the problem about the average relative disposition of adjacent bubbles and its 
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evolution with time, To take into account in equations of motion terms of the form cw , 
it is necessary to consider some additional parameters that define the medium micro- 
structure _ 

Let us assume that the external stream v’ is essentially generated by the change of 

bubble radii and the motion of the solid body boundary S, while the contribution due 

to translational motion of bubbles is comparatively small. It is then possible to neglect 

in the integrals in (3.2) the terms which depend on w. Estimates show that such appro- 
ximation is valid for I 1 R’I > Rcw, where Z is the scale of the region in which va- 

riation of bubble radii takes place, 

when small quantities of order cw are neglected, the average equations (3.1) assume 

(3. 6) 

where the dot denotes differentiation with respect to time along the bubble trajectory. 
Potential rp of external velocity v is determined by the solution of the boundary va- 

lue problem 

where S is the surface of the solid body and U, is the normal velocity of the surface. 

Problem (3. 7) differs from that for Eq. (2. 17) with boundary conditions (2. 18) by the 

absence of terms of order cw. AS shown above, the allowance for the latter when solving 

the problem of bubble motion is incorrect Note that attempts at taking into account 
terms of the form cw are made in all latest investigations on equations for a liquid with 
bubbles (see the survey in /l/), However, such allowance is inadmissible without an in- 
vestigation of the microstructure of a medium with bubbles. Terms of the form cw can 

be taken into consideration in formulas for the fluid velocity averaged over volume after 

solving the problem of bubble motion on the basis of Eqs (3.6) and (3. 7). 
To close the system of equations it is sufficient to add to (3. 6) and (3. 7) Eq. (1.7) for 

the variation of bubble concentration and the dependence of gas pressure Pg in the bub- 

ble on the pattern of its motion, in the simplest case .ng =r: pg (R). 
The conclusion about the impossibility of taking into account the dynamic terms in 

equations with an accuracy to within the product cw of particle concentration by the 
relative velocity without investigating the average characteristics of the relative posi- 

tion of adjacent bubbles is, evidently, valid for any arbitrary multiphase medium, and 

not only for a liquid with bubbles 
Let us take into account in the equation of motion (3. 6) of a bubble the force of vis- 

cous drag 
.,+ 

13. 8) 

where the dimensionless coefficient k can assume various values For small Reynolds 
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numbers Re = Rw / v 4 1 coefficient k can vary from k = 3, according to the Ada- 
mar-Rybchinskii solution for the motion of a bubble in pure liquid, to k = @/2 accord- 
ing to the Stokes solution, if owing to the presence of surface-active matter the bubble 
surface “hardens’. At high Reynolds numbers Re a 1 , k = 9 in the case of bubble 

motion in a pure liquid. 
The introduction of viscosity in Eq (3. 8) implies the assumption of the additivity of 

dynamic and viscous forces acting on a bubble. This hypothesis, widely used in the hy- 

drodynamics of multiphase media, is in the general case incorrect. It can be, however, 

justified in the limit case of Re -+ 0 with the use of the Navier-Stokes equations and, 

also, for Re s 1 with the use of boundary layer equations for the free surface. 
Let the characteristic time of variation of the liquid particle velocity v be r which 

does not exceed the characteristic time of radius variation. Then the estimates of terms 

of Eq (3. 8) make it possible to determine the characteristic value of the relative velo- 

city u - v 
1 u - v 1 (( 1 v 1 for t s W(kv) 
1 u - v I - I v I for r ,( R’J/(kv) 

(3. 9) 

The first of conditions (3. 9) is that of the “freezing in’ of bubbles in the medium 
Thus when a stream flows at velocity v past a body with the characteristic dimension I , 
the bubbles for which R4 l/rcvllv 

are those that are frozen in the medium This estimate is also valid for a tube of cross 
section of scale 1. 

The authors thank L, L Sedov for his interest in this work and valuable remarks. They 

are grateful to P. A. Petrosian for discussing this subject. 
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